
ONOS
Open Network Operating System
Architecture Overview

Thomas Vachuska
tom@onlab.us

ONOS:
SDN OS for Service Provider Networks

● Scalability, High Availability & Performance

● Northbound & Southbound Abstractions

● Modularity

Service Provider Networks
● WAN core backbone

○ Multi-Protocol Label Switching (MPLS) with Traffic Engineering (TE)
○ 200-500 routers, 5-10K ports

● Metro Networks
○ Metro cores for access networks
○ 10-50K routers, 2-3M ports

● Cellular Access Networks
○ LTE for a metro area
○ 20-100K devices, 100K-100M ports

● Wired access / aggregation
○ Access network for homes; DSL/Cable
○ 10-50K devices, 100K-1M ports

Key Performance Requirements

 ONOS

AppsApps

Global Network View / StateGlobal Network View / State

high throughput | low latency | consistency | high availability

High Throughput:
 ~500K-1M paths setups / second
 ~3-6M network state ops / second

High Volume:
~500GB-1TB of network state data

Difficult challenge!

Why Operating System?
● Provides useful services to applications

○ e.g. maintains connection persistence

● Provides framework for driving devices via arbitrary protocols

● Arbitrates shared network resources

● Provides abstractions to simplify resource sharing
○ application intent, network graph & device abstractions

● Isolates and protects resources, tenants & users
○ resource virtualization

● Comes with an SDK
○ APIs & docs, debugging, emulation, monitoring

Distributed Architecture

NB Core API

Distributed Core
(state management, notifications, high-availability & scale-out)

SB Core API

Protocols

Adapters

Protocols

Adapters

Protocols

Adapters

Protocols

Adapters

AppsApps

Distributed Architecture

NB Core API

Distributed Core
(state management, notifications, high-availability & scale-out)

SB Core API

Protocols

Adapters

Protocols

Adapters

Protocols

Adapters

Protocols

Adapters

AppsApps

ONOS Evolution
● Written in Java

● First prototype
○ basic functionality, OpenFlow 1.0
○ scale-out, high-availability, northbound graph abstraction

● Second prototype
○ performance, scale improvements over first generation

● Both
○ prototype quality code
○ OpenFlow as the only southbound protocol
○ relied heavily on open-source off-the-shelf components

ONOS November Release
● Many improvements to distributed core

○ revamped NB & SB interfaces
○ revamped distributed state management

● New abstraction & API
○ application intents

● New & pluggable southbound
○ OpenFlow 1.3 support
○ plugin architecture for legacy protocols

● Improved GUI & CLI
● Modularity

○ revamped code-base for modularity
○ built atop OSGi container - Apache Karaf

ONOS November Release

Northbound - Application Intent Framework
(policy enforcement, conflict resolution)

OpenFlow NetConf . . .

AppsApps

Distributed Core
(scalability, availability, performance, persistence)

Southbound
(discover, observe, program, configure)

Northbound Abstraction:
 - network graph
 - application intents

Core:
 - distributed
 - protocol independent

Southbound Abstraction:
 - generalized OpenFlow
 - pluggable & extensible

Application Intent Framework
● Application specifies high-level intents; not low-level rules

○ focus on what should be done, rather than how it should be done

● Intents are compiled into actionable objectives which are installed
into the environment
○ e.g. HostToHostIntent compiles into two PathIntents

● Resources required by objectives are then monitored
○ e.g. link vanishes, capacity or lambda becomes available

● Intent subsystem reacts by recompiling intent and re-installing
revised objectives

Distributed Core
● Distributed state management framework

○ built for high-availability and scale-out

● Different types of state require different types of synchronization
○ fully replicated
○ master / slave replicated
○ partitioned / distributed

● Novel topology replication technique
○ logical clock in each instance timestamps events observed in underlying

network
○ logical timestamps ensure state evolves in consistent and ordered fashion
○ allows rapid convergence without complex coordination
○ applications receive notifications about topology changes

Distributed Core

172.16.0.0
172.16.0.0

172.16.0.0
172.16.0.0

Application Intents
 - immutable
 - durable & replicated

Global Network View
 - eventually consistent
 - fully replicated

Flow Table Entries
 - strongly consistent
 - partitioned

3-way replication
 - H/A execution via
 distributed queues

Optimistic Replication
 - gossip based
 - anti-entropy
 - partial ordering

Master/Backup
Replication

172.16.0.0
172.16.0.0

172.16.0.0
172.16.0.0

172.16.0.0
172.16.0.0

172.16.0.0
172.16.0.0

● Distribution & replication methods optimized for the type of state
● Based on size and read/write access patterns

Modularity Objectives
● Increase architectural coherence, testability and maintainability

○ establish tiers with crisply defined boundaries and responsibilities
○ setup code-base to follow and enforce the tiers

● Facilitate extensibility and customization by partners and users
○ unit of replacement is a module

● Avoid speciation of the ONOS code-base
○ APIs setup to encourage extensibility and community code contributions

● Preempt code entanglement, i.e. cyclic dependencies
○ reasonably small modules serve as firewalls against cycles

● Facilitate pluggable southbound

ONOS Modules

● Well-defined relationships
● Basis for customization
● Avoid cyclic dependencies

onos-api

onlab-util-misc onlab-util-restonlab-util-osgi

onos-of-api

onos-of-ctl

. . .

onos-core-net

onos-of-adapter-*

onos-core-store

What’s coming on December 5th?
● ONOS with all its key features

○ scalability, high-availability, performance
○ northbound abstractions (application intents)
○ southbound abstractions (OpenFlow adapters)
○ modular code-base

● Open source
○ ONOS code-base on GitHub
○ documentation & infrastructure processes to engage the community

● Use-case demonstrations
○ SDN-IP, Packet-Optical

● Sample applications
○ reactive forwarding, mobility, proxy arp

